
EXPLOITING ENSEMBLE DIVERSITY FOR
AUTOMATIC FEATURE EXTRACTION

Gavin Brown, Xin Yao, Jeremy Wyatt

School of Computer Science,
University of Birmingham,

Birmingham, B15 2TT,
United Kingdom

Heiko Wersing, Bernhard Sendhoff

Honda R&D Europe (Germany) GmbH,
Carl-Legien-Str.30,

63073 Offenbach/Main,
Germany

ABSTRACT

We present an automatic method, based on a neural net-
work ensemble, for extracting multiple, diverse and com-
plementary sets of useful classification features from high-
dimensional data. We demonstrate the utility of these di-
verse representations for an image dataset, showing good
classification accuracy and a high degree of dimensionality
reduction. We then outline a number of possible extensions
to the project in an evolutionary computation context.

1. INTRODUCTION

1.1. Ensemble Learning

Neural network ensembles offer a number of advantages
over a single neural network system. They have the po-
tential for improved generalization, lower dependence on
the training set, and reduced training time. Sharkey [8] pro-
vides a excellent summary of the literature up to 1998, while
Dietterich [3] summarises up to 2000.

Training a neural network generally involves a delicate
balance of various factors. The bias-variance decomposi-
tion [4] states that the mean square error of an estimator (in
our case, a neural network) is equal to the bias squared plus
the variance. There is a trade-off here — with more training,
it is possible to achieve lower bias, but at the cost of a rise
in variance. Krogh and Vedelsby [5] extend this concept to
ensemble errors, showing how the bias can be seen as the
extent to which the averaged output of the ensemble mem-
bers differs from the target function, and the variance is the
extent to which the ensemble members disagree. Ueda and
Nakano [9] further provide a detailed proof of how the de-
composition can be extended to bias-variance-covariance.
From this result, one way to decrease the error is clear: de-
crease the covariance, ideally making it strongly negative -
though too large a decrease in covariance can cause a rise in
bias and variance. This means that an ideal ensemble con-
sists of highly correct classifiers that disagree as much as

possible (balancing the covariance against the bias and vari-
ance), empirically verified by Opitz and Shavlik [7] among
others. Such an idea has also been shown using rule-based
systems in an evolutionary context, demonstrating the gen-
erality of the idea and its associated techniques.

Negative Correlation (NC) Learning [6] is an efficient
ensemble training method which can easily be implemented
on top of standard backpropagation in feedforward networks.
It incorporates a measure of ensemble diversity into the er-
ror function of each network: thus each network not only
decreases its error on the function, but also increases its di-
versity from other network errors. The procedure has the
following form: take a set of neural networks and a training
pattern set, each pattern in the set is presented and back-
propagated on, simultaneously, by the networks.

In the standard backpropagation algorithm, the error func-
tion for the output layer nodes is�����������	�
������	�
�
����
where � � ��	�
 is the output of network � on pattern 	 , and����	�
 is the desired response for that pattern. In NC-learning,
the error function becomes�����������	�
������	�
�
 ������� � ��	�
!� (1)

where � ����	�
 is

�"�#� ��	�
$���%��	�
�
'& (*)+ � �"�
(��	�
���%��	�
�
!� (2)

and � is an adjustable strength parameter for the penalty.�%��	�
 is the output of the ensemble on pattern 	 . A common
ensemble output function (and used throughout this paper)
is a simple average of the networks in the ensemble, i.e.,

�%��	�
-, �.0/& � +#1 ������	�
32 (3)

In this case we have an overall error function of�� ��� � ��	�
������	�
�
 � � � ��� � ��	�
���%��	�
�
 � (4)

As can be seen from (4), each network receives lower
error for moving its response closer to the target response,
and away from the mean response of all the other networks
— this is a trade-off, controlled by the penalty strength pa-
rameter, � . When � ,�� 2 � , the networks ignore the other
errors, and this is termed independent training, equivalent
to not using NC at all.

Previous work [1] has shown the effectiveness of this
technique under different circumstances.

1.2. Motivation

During ensemble training, each network is encouraged, ei-
ther directly through NC-learning, or indirectly through the
random weight initialisation, to specialise to a different part
of the dataset. These networks will be forming internal rep-
resentations of the data in their hidden layer. Since they
have specialism to different portions of the problem, they
are likely to have developed different representations. Such
diverse representations can be used effectively as features in
further classification steps. In essence, an ensemble is used
here as a feature extractor, rather than as a classifier.

Although single neural networks have been used in fea-
ture extraction and dimension reduction, This is the first
time, to our best knowledge, neural network ensembles have
been used in feature extraction. In the rest of this paper, we
will describe in detail the method and algorithm we pro-
posed. Experimental results are also presented to demon-
strate the effectiveness of our proposed method and algo-
rithm. It is interesting to observe that our automatically ex-
tracted features performed similarly to those extracted man-
ually by human beings based on neuroscience knowledge.

2. DATASET

The dataset used in our experimental study is based on a
subset of the COIL-100 database. We used only the first 20
objects in order to facilitate comparison with the previous
work. Previous work by Wersing and Korner [10] investi-
gated how a hierarchy of biologically inspired feature detec-
tors can create a useful re-representation of raw image data.
Figure 2 illustrates the basic idea, though for more details
the reader is referred to the original paper [10].

The input to the hierarchy is the original grayscale im-
age data, 128 by 128 pixels. An example is shown in fig-
ure 1.

The first stage of processing applies Gabor filters at four
orientations, followed by spatial pooling, producing four
images of 16 by 16 pixels — this is the ’C1’ data, a vector
of length 1024. The second stage applies their technique,

Figure 1: Some images from the COIL-100 database

original
image

(128x128)

C1
4 x (16x16)

C2
50 x (8x8)

Gabor filtering,
Spatial pooling cells

Sparse Invariant
Feature Decomposition

Figure 2: Wersing and Korner’s hierarchy

sparse invariant feature decomposition, producing fifty 8
by 8 images, so a vector of length 3200 — this is the ’C2’
data. This is then used in a classification technique such as
k-Nearest Neighbour.

This architecture demonstrated very good performance,
attributed to the feature detectors being localized to particu-
lar portions of the image. The disadvantage lies in the large
amount of time spent on design and tuning of various pa-
rameters, including the connection patterns and size of lo-
calised fields. In this paper we try to remove a large portion
of the design step by automatically encouraging specialisa-
tion to features within the image. We perform a classifi-
cation on a set of features extracted from the C1 data, and
compare with the same classification technique on the C2
data.

The C1 data was rescaled to be between � and
�
. Each

object has � � views at rotations of 5 degrees. We used 4
views for training, and 68 for testing, giving a total of 80
vectors for training and 1360 vectors for testing. We used
standard backprop with a learning rate of �'2 � . Training was
stopped when the reduction in MSE was less than

� ����� ,
over the previous 25 iterations. We performed 100 trials of
each experiment, from random initial weights.

Our benchmark performance throughout these experi-
ments will be the testing rate achieved by the k-Nearest
Neighbour classifier, with � , �

, on the raw C1 data and C2
data. With 4 training views at 0, 90, 180, and 270 degrees,
testing rate on C1 data was 1151 from 1360, so �
	 2 �� . For
the C2 data, it was 1176, or � � 2 	 � .

k-NN

STAGE 1

STAGE 2 STAGE 3

new classification

(from other networks)
(C1 data)

1-of-m
output representation

input data

Figure 3: Stages of the node extraction process

3. EXTRACTING FEATURES

As preliminary work we used standard Multilayer Percep-
trons (MLPs) to classify the data, with three experimental
setups. The first was a single MLP, where we vary the num-
ber of hidden nodes, we label this SingleNet. The second
was an ensemble of 3 networks, and again we vary the num-
ber of hidden nodes per network, we label this Smallscale.
The third was an ensemble of networks each with 30 hidden
nodes, where we vary the number of networks, we label this
Largescale. Results are summarised in figure 4 and com-
pared to results using the hidden node extraction method,
which we term FEX, for Feature EXtraction.

3.1. Method

In this set of experiments we take the hidden node represen-
tation of each pattern to a further classification stage. By
this we mean we train the network initially, then pass each
pattern through the first layer of weights, recording the hid-
den node activations, which will be the new intermediate
representation. We feed this to a k-Nearest Neighbour clas-
sifier, though in principle any statistical classifier could be
applied. We use the SingleNet, Smallscale, and Largescale
setups, taking all hidden nodes outputs from all networks as
the re-representation of the pattern. For example if we have
30 networks each with 30 hidden nodes, the k-NN classifier
will work on vectors of length 900. Figure 3 illustrates three
stages. The first is to train an ensemble of MLPs towards a
unary representation. The second stage is to take the hidden
node outputs and feed them to another classifier. The third
stage performs a k-Nearest Neighbour classification (� , �

)
on the new representation.

3.2. Results

Figure 4 shows a comparison between testing performance
on single networks and ensembles, varying the number of
hidden nodes per network. The C1 data is of dimension
1024, and with a kNN can provide 84.6% performance. The

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

’C1’
’SmallScale-FEX’

’SmallScale’
’SingleNet-FEX’

’SingleNet’

Figure 4: Testing classification rate for SingleNet versus
SmallScale, varying the number of hidden nodes

features extracted from the SmallScale ensemble (100 hid-
den nodes in each of 3 nets) obtained a comparable 82.5%
(over 100 trials), with a maximum performance equalling
the C1 data at 84.6% but with a dimension of just 300. Fea-
ture extraction from a single network with 90 hidden nodes
obtained 77.5%, while using an ensemble with 3 nets each
with 30 hidden nodes obtained 81.6%. This result shows
clearly the advantage of extracting hidden nodes from an
ensemble rather than a single network.

Table 1 shows performance of LargeScale with and with-
out FEX, for 10, 20 and 30 networks each of 30 hidden
nodes. We can see comparable performance to the C1 data
obtaining on average 84.2% with the 30x30 architecture.
We can also see peak performance exceeding the original C1
data when using extracted features, at 85.4% on the 10x30
architecture. This was again with only 300 features rather
than the 1024 of the C1 data.

10 20 30
LargeScale 82.9 (84.2) 83.3 (84.5) 83.5 (84.7)

LargeScale-FEX 83.7 (85.4) 84.0 (85.3) 84.2 (85.4)

Table 1: LargeScale testing accuracy, mean and (max) over
100 trials

4. PRUNING FEATURES

4.1. Method

In this section we attempt to selectively prune subsets of
networks and hidden nodes that may be redundant. In this
way we can reduce the storage space necessary for the k-
NN classifier. The pruning occurs at stage 2, as illustrated in
figure 3, after we have trained an ensemble. The following
algorithm is applied:

for each output class c
pick candidate net(s) with low MSE
for each candidate network
identify nodes with high contribution

endfor
add hidden nodes to feature set

endfor

For each class we first identify one or more candidate
networks that may be useful for correct classification. We
choose the networks with lowest MSE on instances of this
class. This has the effect of pruning away any networks
which are damaging to the overall ensemble performance.
Next we identify hidden nodes within this set of candidates
that contribute most to the ensemble performance (termed
the contribution to activation). This is done by noting the
activation of the relevant output node, with and without each
hidden node. The nodes which cause the largest change in
activation are selected as useful for classification.

If two particular classes are found to utilise the same
hidden node, an option is to include this twice in the ex-
tracted features. Preliminary work revealed that this does
not seem to be a useful step, so repeated nodes were omit-
ted from the final experiments.

At the end of this algorithm, a subset of the hidden nodes
from various networks in the ensemble will have been se-
lected. It is not necessarily the case that all networks will
contribute hidden nodes.

We note that many other algorithms to calculate contri-
bution to activation could be used here. One potential is
to measure the correlation between the inputs and outputs
of the hidden nodes, which would be a non-linear, non-
monotonic correlation that requires careful consideration.
Another is to allow a co-evolutionary algorithm to identify
nodes. This is discussed for future work in the conclusions
of this paper.

4.2. Results

We vary the � parameter, which is the percentage of hidden
nodes picked from a given specialist network for a particular
class. In our experiments we picked one specialist per class.

Table 2 shows performance for various ensemble archi-
tectures for different � parameters, while table 3 corre-
sponds to it and shows the actual number of features ex-
tracted from the setups.

The last column in table 2, labelled ’100’ means 100%
of hidden nodes were chosen per specialist net that was se-
lected. It may be the case that not all networks are chosen
to be specialists, so this allows a pruning of unnecessary
networks. The 10x30 architecture (10 nets each with 30
hidden nodes) needs only 251 features on average (over 100
trials) to obtain 83.5% accuracy. This can be compared to

the 84.6% of using the C1 data with 1024 features. The di-
mensionality is cut in quarter, while only sacrificing 1.1%
accuracy.

We can see from tables 2 and 3 that taking just 10% of
nodes from each network with the 30 network ensembles
allows a significant reduction in the number of necessary
features, while only conceding 2 or 3 percent accuracy. This
result shows the robustness of the automatically extracted
features.

� 10 25 50 75 100
1x30 75.1 75.9 75.9 75.9 75.9
1x90 77.0 77.5 77.5 77.5 77.5
1x100 77.2 77.7 77.7 77.7 77.7
1x300 79.8 80.5 80.5 80.5 80.5
3x30 78.7 81.0 81.5 81.6 81.6
3x100 80.3 81.9 82.4 82.4 82.5
3x300 81.8 83.0 83.2 83.2 83.2
10x30 79.7 82.3 83.1 83.4 83.5
20x30 80.0 82.6 83.3 83.6 83.8
30x30 80.0 82.5 83.5 83.7 83.9

Table 2: Average accuracy (100 trials) of FEX on different
ensemble topologies, applied with node pruning (M param-
eter)

� 10 25 50 75 100
1x30 25.9 29.4 30.0 30.0 30.0
1x90 76.9 86.9 90.0 90.0 90.0

1x100 84.7 96.6 100.0 100.0 100.0
1x300 215.0 280.1 300.0 300.0 300.0
3x30 44.0 70.8 86.1 88.2 89.7

3x100 145.2 237.0 291.3 297.2 300.0
3x300 392.7 676.9 876.4 894.3 900.0
10x30 53.9 110.3 184.0 218.8 251.7
20x30 56.5 121.9 225.3 288.8 353.7
30x30 57.5 127.2 245.1 327.2 414.2

Table 3: Average number of features extracted (100 trials),
with node pruning (corresponds to table 2)

Table 4 shows the accuracy of ensembles with 30 hidden
nodes, as we vary the � parameter. It shows the accuracy
increases when we apply the NC algorithm, proving most
useful for the larger ensembles. Table 5 shows the number
of features extracted from these setups.

Best performance was observed at ��� 2 	 � from a 10 net-
work ensemble with � , � 2 � . This has exceeded the ac-
curacy on the C1 data by 0.8% and exceeded the accuracy
when not using NC learning by 1.9%.

Nets �'2 � �'2 � � � 2 � � � 2 �
10 83.5 83.5 83.6 83.8
20 83.8 83.8 83.8 84.0
30 83.9 83.9 83.9 84.2

Table 4: Largescale-FEX, varying � , testing accuracy

Nets �'2 � �'2 � � � 2 � � � 2 �
10 251.6 248.6 262.1 265.2
20 353.7 359.3 380.5 392.8
30 414.2 414.9 437.9 445.8

Table 5: Largescale-FEX, varying � , average number of
features extracted

5. CONCLUSIONS

The technique demonstrated has shown comparable classi-
fication accuracy to the existing method, though in a signifi-
cantly lower dimensionality. Use of NC learning was shown
to increase accuracy further on feature extraction from the
larger ensembles, though not as effectively on the smaller
ensembles.

The feature extraction process was applied to single net-
works and ensembles with equivalent total numbers of hid-
den nodes. In all cases,

.
features extracted from an en-

semble of small networks were found to be significantly more
useful for classification than

.
features extracted from a

single large network.
The feature pruning process was found to be success-

ful, at best on the 30 network ensemble reducing a 1024
dimension vector down to just 127, only conceding 2.1% in
classification accuracy. Although the FEX technique could
not match the accuracy that the C2 data provided, the best
observed performance did come close at only 1% less than
C2, using less than one third of the number of features.

Further work will consist of applying the technique to
lower dimensional problems, so the number of hidden nodes
can match the number of inputs and explore the re-representation
issue rather than the dimensionality reduction issue.

The choice of networks is an obvious step where an evo-
lutionary algorithm could be implemented. Previous work
[11] has evolved neural networks for various tasks, show-
ing exceptional resilience to manipulation of hidden nodes.
Evolving the choice and combinations of nodes seems an
ideal task for a co-evolutionary environment. In this setup
an individual would be a certain combination of nodes, and
the fitness would be calculated with reference to other com-
binations in the population. One possible fitness function
would be a measurement of how many other individuals in
the population get the same subset of patterns correct. This
investigation could be well grounded in previous work on

implicit fitness sharing [2].

6. REFERENCES

[1] Gavin Brown and Xin Yao. On the effectiveness of
negative correlation learning. In Proceedings of First
UK Workshop on Computational Intelligence, pages
57–62, 2001. Edinburgh, Scotland.

[2] Paul Darwen and Xin Yao. Every niching method has
its niche: fitness sharing and implicit sharing com-
pared. In Proc. of Parallel Problem Solving from Na-
ture (PPSN) IV - Lecture Notes in Computer Science
1141. Springer-Verlag, 1996.

[3] Thomas G. Dietterich. Ensemble methods in ma-
chine learning. In Proceedings of First International
Workshop on Multiple Classifier Systems (MCS 2000),
pages 1–15, 2000.

[4] Stuart Geman, Elie Bienenstock, and Rene Doursat.
Neural networks and the bias/variance dilemma. Neu-
ral Computation, 4:1–58, 1992.

[5] Anders Krogh and Jesper Vedelsby. Neural net-
work ensembles, cross validation and active learning.
Advances in Neural Information Processing Systems
(NIPS-7), 7, 1995.

[6] Yong Liu. Negative Correlation Learning and Evolu-
tionary Neural Network Ensembles. PhD thesis, Uni-
versity College, The University of New South Wales,
Australian Defence Force Academy, Canberra, Aus-
tralia, 1998.

[7] David Opitz and Jude Shavlik. Generating accurate
and diverse members of a neural-network ensemble.
Advances in Neural Information Processing Systems,
8, 1996.

[8] Amanda Sharkey. Multi-Net Systems, chapter Com-
bining Artificial Neural Nets: Ensemble and Modu-
lar Multi-Net Systems, pages 1–30. Springer-Verlag,
1999.

[9] N. Ueda and R. Nakano. Generalization error of en-
semble estimators. In Proceedings of International
Conference on Neural Networks (ICNN96), pages 90–
95, 1996.

[10] H. Wersing and E. Körner. Unsupervised learning
of combination features for hierarchical recognition
models. In Int. Conf. Artif. Neur. Netw. ICANN, 2002.
accepted.

[11] Xin Yao and Yong Liu. A new evolutionary system for
evolving artificial neural networks. IEEE Transactions
on Neural Networks, 8(3):694–713, May 1997.

